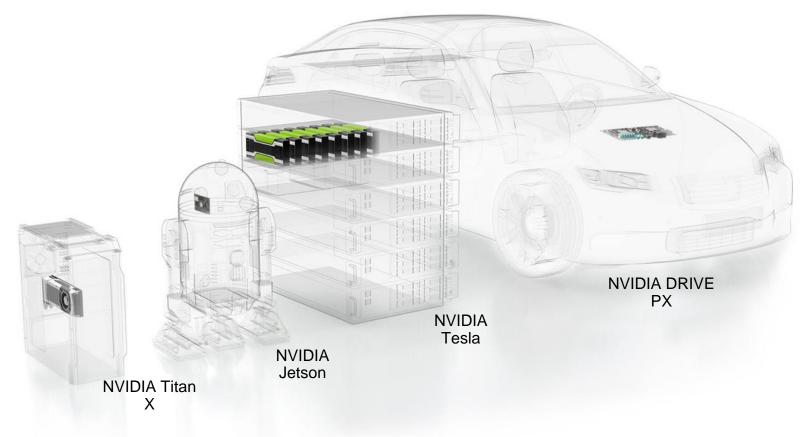
ALISON B LOWNDES

DEEP LEARNING Deep Learning Solutions Architect & Community Manager | EMEA

THE GPU-ACCELERATED WORLD

MAXWELL

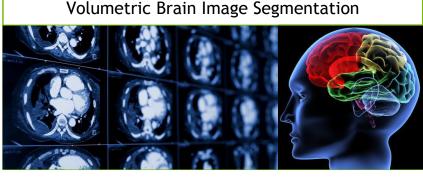

Why is Deep Learning Hot Now?

300 hours of video uploaded every minute

DEEP LEARNING EVERYWHERE

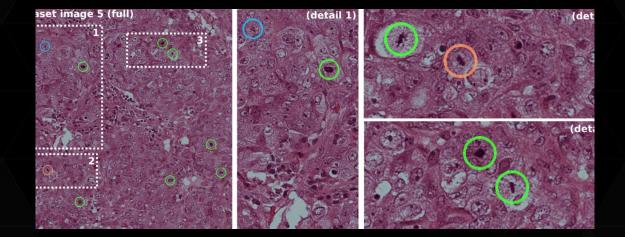
Practical Examples of Deep Learning

Image Classification, Object Detection, Localization, Action Recognition



Pedestrian Detection, Lane Detection, Traffic Sign Recognition

Speech Recognition, Speech Translation, Natural Language Processing



Breast Cancer Cell Mitosis Detection,

CANCER SCREENING

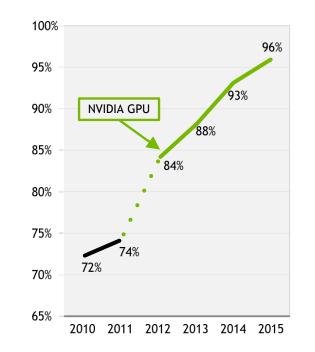
Mitosis Detecion

Ciresan et al. Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks, 2013

📀 NVIDIA.

GPUs and Deep Learning

	NEURAL NETWORKS	GPUS
Inherently Parallel	\checkmark	✓
Matrix Operations	\checkmark	✓
FLOPS	✓	✓
Bandwidth	\checkmark	✓


GPUs deliver --

- same or better prediction accuracy
- faster results
- smaller footprint
- lower power

Image Recognition

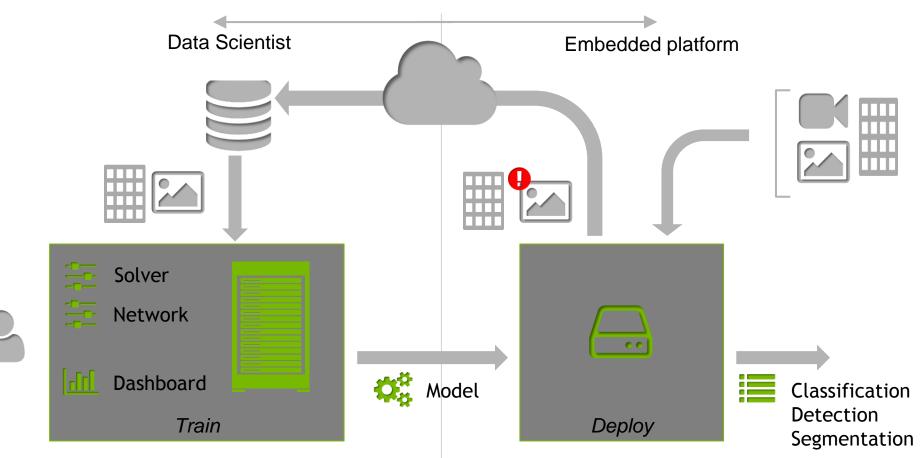
IMAGENET

Deep Learning Platform Update

GPU Computing

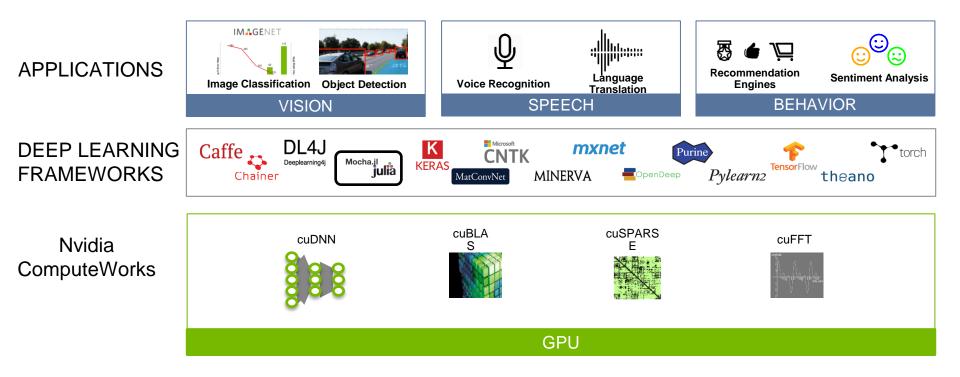
CUDA

Framework to Program NVIDIA GPUs


A simple sum of two vectors (arrays) in C

void vector_add(int n, const float *a, const float *b, float *c)
{
 for(int idx = 0 ; idx < n ; ++idx)
 c[idx] = a[idx] + b[idx];
}</pre>

GPU friendly version in CUDA


global void vector_add(int n, const float *a, const float *b, float *c)
<pre>int idx = blockIdx.x*blockDim.x + threadIdx.x; if(idx < n)</pre>
c[idx] = a[idx] + b[idx];
<pre>}</pre>

An end-to-end solution

DEEP LEARNING ECOSYSTEM

Deep Learning Frameworks Enable Deep Learning Applications

<mark> NVIDIA</mark> DEVELOPER

NVIDIA SDK

The Essential Resource for GPU Developers

NVIDIA SDK

DEEP LEARNING

Deep Learning SDK High-performance tools and libraries for deep learning

SELF-DRIVING CARS

NVIDIA DriveWorks™ Deep learning, HD mapping and supercomputing solutions, from ADAS to fully autonomous

VIRTUAL REALITY

NVIDIA VRWorks™ A comprehensive SDK for VR

headsets, games and professional applications

GAME DEVELOPMENT NVIDIA GameWorks™

Advanced simulation and rendering technology for game development

technology for game development

ACCELERATED COMPUTING

NVIDIA ComputeWorks™

Everything scientists and engineers need to build GPU-accelerated applications

DESIGN & VISUALIZATION

NVIDIA DesignWorks™

Tools and technologies to create professional graphics and advanced rendering applications

AUTONOMOUS MACHINES

NVIDIA JetPackTM Powering breakthroughs in autonomous machines, robotics and embedded computing

ADDITIONAL RESOURCES

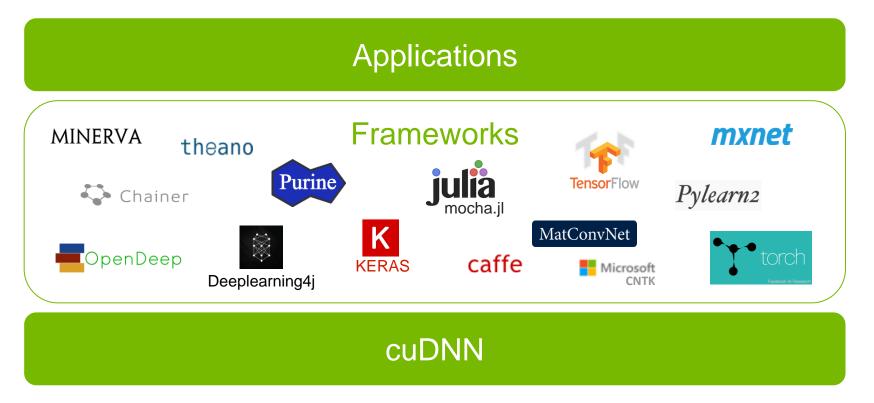
More resources for GPU Developers

NVIDIA Deep Learning SDK

High performance GPU-acceleration for deep learning

Powerful tools and libraries for designing and deploying GPU-accelerated deep learning applications

> High performance building blocks for training deep neural networks on NVIDIA GPUs


Accelerated linear algebra subroutines for developing novel deep learning algorithms

Multi-GPU scaling that accelerates training on up to eight GPU

"We are amazed by the steady stream of improvements made to the NVIDIA Deep Learning SDK and the speedups that they deliver"

cuDNN: Powering Deep Learning

MOST POPULAR FRAMEWORKS

		CAFFE	TORCH	THEANO	TENSORFLOW
Applications		Image, Video	Image, Video, Speech	Image, Video, Speech	Image, Video, Speech
cuDNN		v5	v5	v5	v5
Multi-GPU		✓	\checkmark	1	✓
Neural Network		CNN, RNN	CNN, RNN(cuDNN accelerated)	CNN, RNN	CNN, RNN
Programming Interface(s)C++, Python, MATLABLua, L		Lua, LuaJIT, C++	Python	C++, Python	
Platforms		Linux, Windows, MacOS	Linux, MacOS		
Product	Train	Geforce, Tesla, DGX-1			
Support	Infer	Tesla, TX1	Tesla	Tesla	Tesla

OTHER NOTABLE FRAMEWORKS

		CNTK	DSSTNE	CHAINER	MXNET	KALDI
Applicat	tions	Speech	Recommender	loT	Image, Video, Speech	Speech
cuDNN		v4	v5	v5	v5	x
Multi-G	งบ	\checkmark	√	1	1	X
Neural N	Network	CNN, RNN	FC		CNN, RNN	RNN
Programming Interface(s)		C++, Python	C++	Python	C++, Python, Matlab, JavaScript	C++
Platforms		Windows, Linux	Linux	Linux	Windows, iOS, Android, Linux	Linux
Product Support	Training	Geforce, Tesla, DGX-1				
	Inferenc e	Tesla, TX1	Tesla	Tesla	Tesla	Tesla

TENSORFLOW BY GOOGLE

Benchmarks & Highlights

IMAGES PER SECOND FOR MNIST

IMAGES PER SECOND FOR INCEPTION V3

WORDS PER SECOND WITH LSTM WORD

- Fastest Growing
- Flexible any computation as a data flow graph
- Distributed
- SyntaxNet

FEATURES

Deep Flexibility

Express any computation as a data flow graph

Auto-Differentition

Just define the computation architecture and feed data

True Portability

GPUs, CPUs, Desktops, Servers, Mobiles

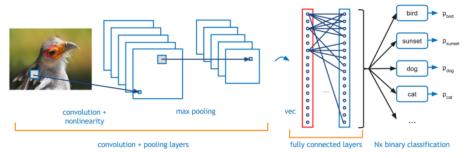
「在住 隈 の治病 hello 空気が出 ola ola oli olar ciao o guten tag so 今日は goddag Chao ahn (Chao chi challo Charter Shalom

Language Options

Python, C++, Java, JavaScript, R

Connect Research and Production

Allows researchers to push ideas to products faster


Maximize Performance

Threads, queues ad asynchronous computation to use GPUs and CPUs

Caffe About

- Released in 2014 by Yangqing while at UC Berkeley, Caffe is the most popular open source Deep Learning framework to date
- It has been the de facto framework for image classification.
- It's known for its massive collection of different neural networks in the Model Zoo
- It is a foundation for many other frameworks such as CaffeOnSpark by Yahoo.

Caffe features

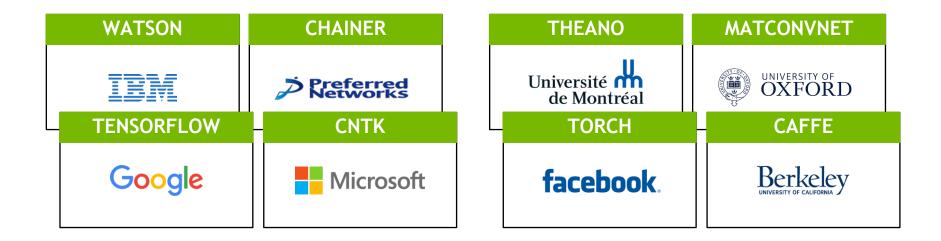
Expressive Architecture

Models, optimization, and GPU/CPU are defined by configuration instead of coding

Speed

Designed for massive deployment, Caffe can process over 60M images per day with a single K40 GPU

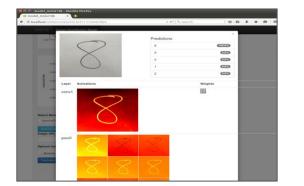
Extensible Code

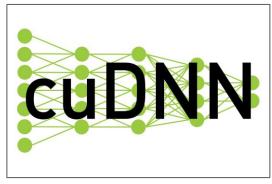

Coding style fosters active development to stay innovative

Community

Powers academic research projects, startup prototypes, and large-scale industrial applications

NVIDIA GPU: the engine of deep learning




NVIDIA CUDA ACCELERATED COMPUTING PLATFORM

Deep Learning Performance Doubles For Data Scientist and Researchers

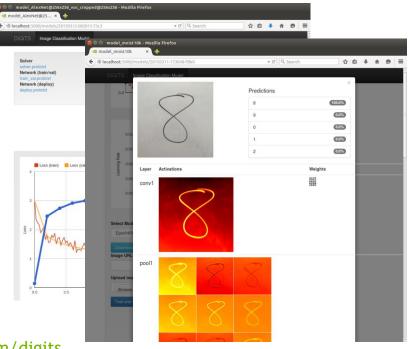
Train Models up to 2x Faster with Automatic Multi-GPU Scaling & Object Detection 2x Faster Single GPU Training Support for Larger Models, support for RNN LSTM

2x Larger Datasets Instruction-level Profiling

cuDNN 5.1

CUDA 7.5

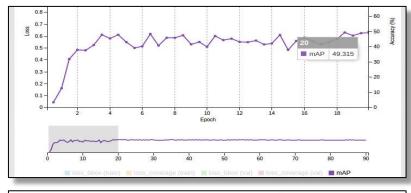
DIGITS 4

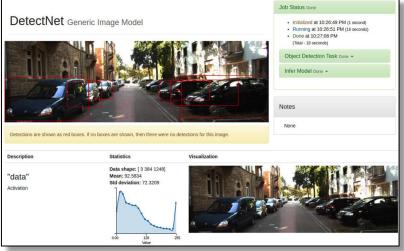

DIGITSTM Interactive Deep Learning GPU Training System

Quickly design the best deep neural network (DNN) for your data

Train on multi-GPU (automatic)

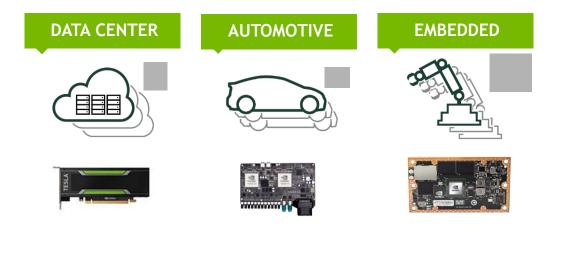
Visually monitor DNN training quality in real-time

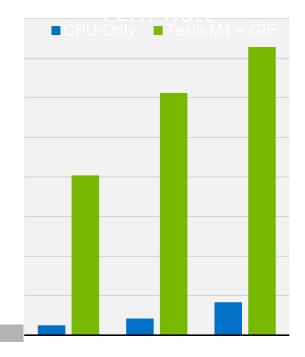

Manage training of many DNNs in parallel on multi-GPU systems



Preview DIGITS Future

Object Detection Workflow


- Object Detection Workflows for Automotive and Defense
- Targeted at Autonomous Vehicles, Remote Sensing



GPU INFERENCE ENGINE (GIE)

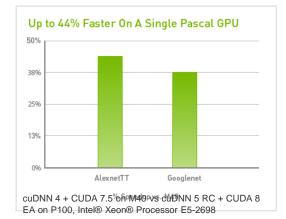
High-performance deep learning inference for production deployment

GoogLenet, CPU-only vs Tesla M4 + GIE on Single-socket Haswell E5-2698 v3@2.3GHz with HT

CUDNN 5.1 - WHAT'S NEW

LSTM RNNs, Pascal GPU support, Improved Performance

High-performance deep learning primitives


LSTM recurrent neural networks deliver up to 6x speedup in Torch

Up to 44% faster training on a single NVIDIA® Pascal™ GPU

Improved performance and reduced memory usage with FP16 routines on Pascal GPUs

Speedup of Torch with cuDNN 5

Optimising RNNs with cuDNN v5.1 ParallelForAll

devblogs.nvidia.com/parallelforall/optimizing-recurrent-neural-networks-cudnn-5/

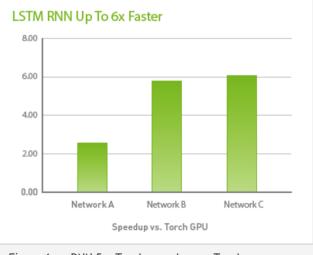
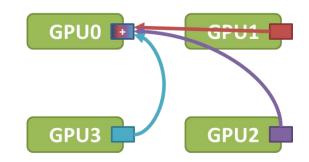


Figure 1: cuDNN 5 + Torch speedup vs. Torch-rnn implementation, M40, Intel® Xeon® Processor E5-2698

Supports:


- ReLU & tanh activation functions
- Gated Recurrent Units (GRU)
- Long Short-Term Memory (LSTM)

NCCL

Accelerating Multi-GPU Communications

A topology-aware library of accelerated collectives to improve the scalability of multi-GPU applications

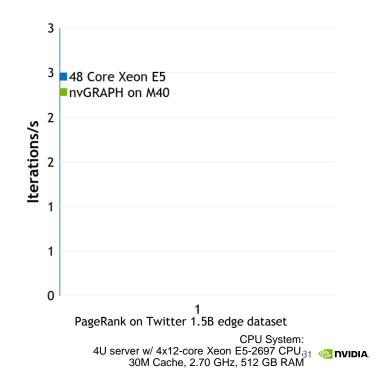
- Patterned after MPI's collectives: includes all-reduce, all-gather, reduce-scatter, reduce, broadcast
- Optimized intra-node communication
- Supports multi-threaded and multiprocess applications

github.com/NVIDIA/nccl

developer.nvidia.com/nvgraph

nvGRAPH Accelerated Graph Analytics

nvGRAPH for high performance graph analytics


Deliver results up to 3x faster than CPU-only

Solve graphs with up to 2.5 Billion edges on 1x M40

Accelerates a wide range of graph analytics apps:

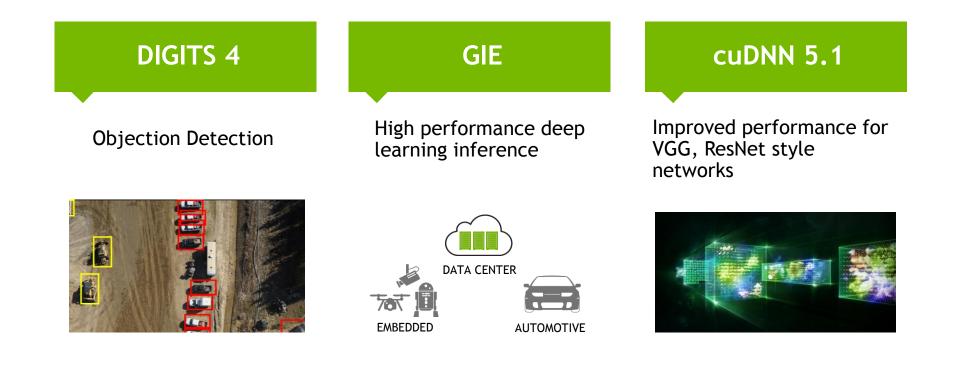
PageRank	Single Source Shortest Path	Single Source Widest Path	
Search	Robotic Path Planning	IP Routing	
Recommendation Engines	Power Network Planning	Chip Design / EDA	
Social Ad Placement	Logistics & Supply Chain Planning	Traffic sensitive routing	

nvGRAPH: 3x Speedup

cuSPARSE: (DENSE MATRIX) X (SPARSE VECTOR) Speeds up Natural Language Processing

cusparse<T>gemvi()

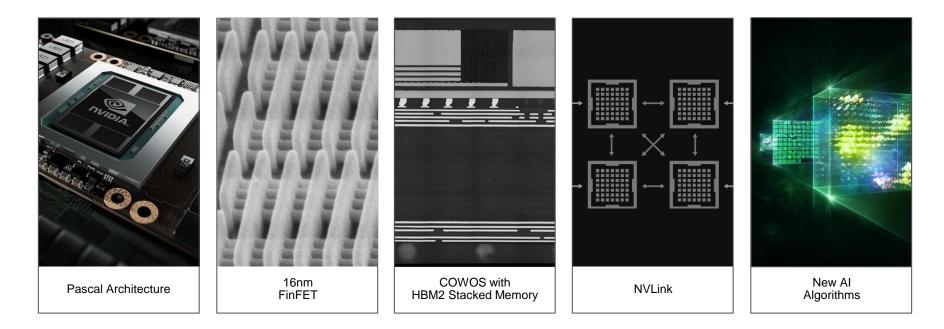
- $y = \alpha * op(A) * x + B * y$
- A = dense matrix
- x = sparse vector
- y = dense vector


 $\begin{array}{c} y_{1} \\ y_{2} \\ y_{3} \end{array} \end{array} = \boldsymbol{\alpha} \left[\begin{array}{c|c} \underline{A_{1}} & \underline{A_{1}} & \underline{A_{1}} & \underline{A_{4}} & \underline{A_{4}} \\ \underline{1} & \underline{2} & \underline{3} & \underline{4} & 5 \\ \underline{1} & \underline{2} & \underline{3} & \underline{4} & 5 \\ \underline{1} & \underline{2} & \underline{3} & \underline{4} & 5 \\ \underline{A_{3}} & \underline{A_{3}} & \underline{A_{3}} & \underline{A_{3}} & \underline{A_{3}} & \underline{A_{3}} \\ 1 & \underline{2} & \underline{3} & 4 & 5 \end{array} \right] \left[\begin{array}{c} \underline{-} \\ 2 \\ - \\ \underline{-} \\ 1 \end{array} \right] + \boldsymbol{\beta} \left[\begin{array}{c} y \\ 1 \\ y \\ 2 \\ y \\ 3 \end{array} \right]$

Sparse vector could be frequencies of words in a text sample

cuSPARSE provides a full suite of accelerated sparse matrix functions

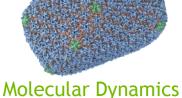
developer.nvidia.com/cusparse


What's new in deep learning software

Deep Learning Hardware

INTRODUCING TESLA P100

Five Technology Breakthroughs Made it Possible



VISUALIZATION-ENABLED SUPERCOMPUTERS

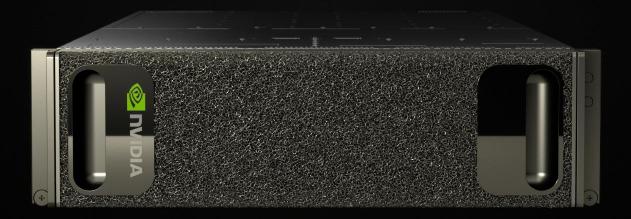
Simulation + Visualization



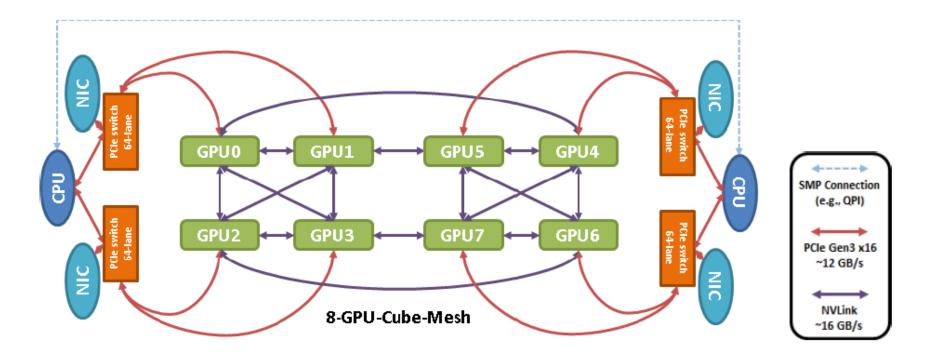
<section-header>

ORNL Titan

Cosmology

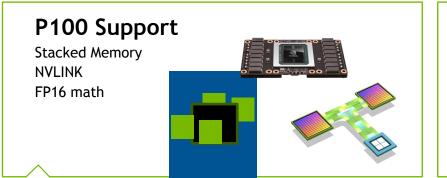


NVIDIA DGX-1 WORLD'S FIRST DEEP LEARNING SUPERCOMPUTER

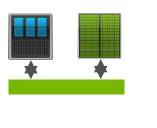

Engineered for deep learning | 170TF FP16 | 8x Tesla P100 NVLink hybrid cube mesh | Accelerates major Al frameworks

8x Tesla P100 16GB, Dual Xeon, NVLink Hybrid Cube Mesh 7 TB SSD, Dual 10GbE, Quad IB 100Gb 3RU - 3200W

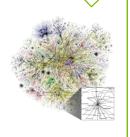
NVIDIA[®] DGX-1[™]



DGX-1 SYSTEM TOPOLOGY


For the 8-GPU-Cube-Mesh topology, there is no need to use PCIe for any GPU-to-GPU communications (whether point-to-point or collective).

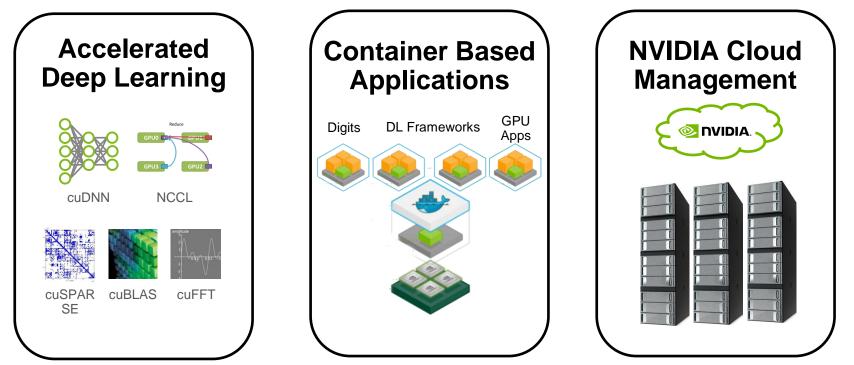
CUDA 8 - WHAT'S NEW


Unified Memory

Larger Datasets Demand Paging New Tuning APIs Standard C/C++ Allocators CPU/GPU Data Coherence & Atomics


Libraries

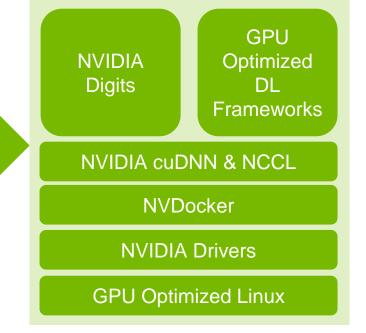
New nvGRAPH library cuBLAS improvements for Deep Learning


Developer Tools

Critical Path Analysis 2x Faster Compile Time OpenACC Profiling Debug CUDA Apps on Display GPL

NVIDIA DGX-1 SOFTWARE STACK

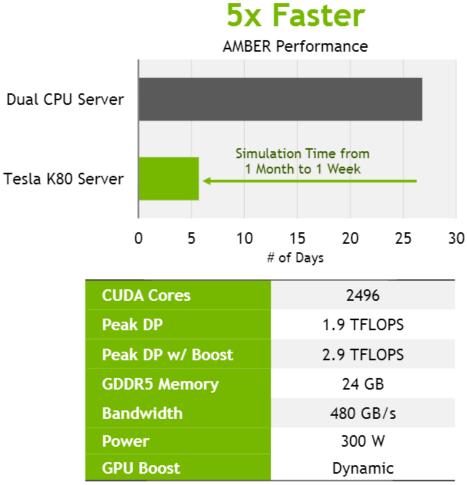
Optimized for Deep Learning Performance



NVIDIA DGX-1 SOFTWARE STACK

Optimized for Deep Learning Performance

- Container creation & deployment
- Multi DGX-1 cluster manager
- Deep Learning job scheduler
- Application repository
- System telemetry & performance monitoring
- Software update system


NVIDIA DGX-1 42

🐼 ΠΛΙΟΙΔ

TESLA K80

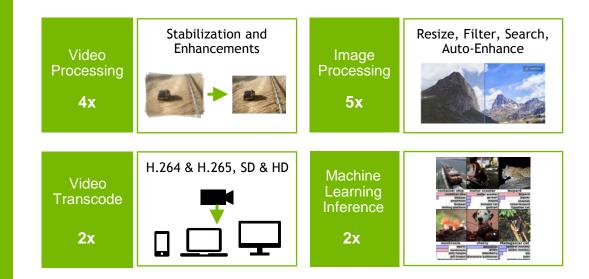
World's Fastest Accelerator for HPC & Data Analytics

AMBER Benchmark: PME-JAC-NVE Simulation for 1 microsecond

TESLA M40

World's Fastest Accelerator for Deep Learning

8x Faster Caffe Performance


CUDA Cores	3072
Peak SP	7 TFLOPS
GDDR5 Memory	12 GB
Bandwidth	288 GB/s
Power	250W

Caffe Benchmark: AlexNet training throughput based on 20 iterations, CPU: E5-2697v2 @ 2.70GHz. 64GB System Memory, CentOS 6.2

TESLA M4

Highest Throughput Hyperscale Workload Acceleration

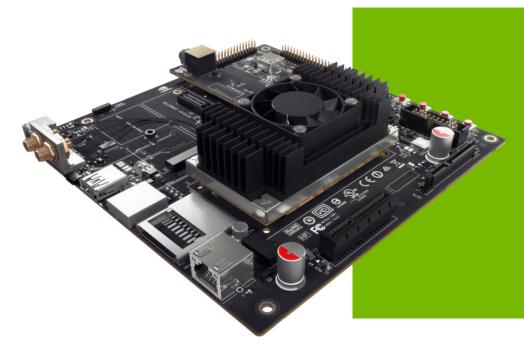
CUDA Cores	1024
Peak SP	2.2 TFLOPS
GDDR5 Memory	4 GB
Bandwidth	88 GB/s
Form Factor	PCIe Low Profile
Power	50 - 75 W

Preliminary specifications. Subject to change.

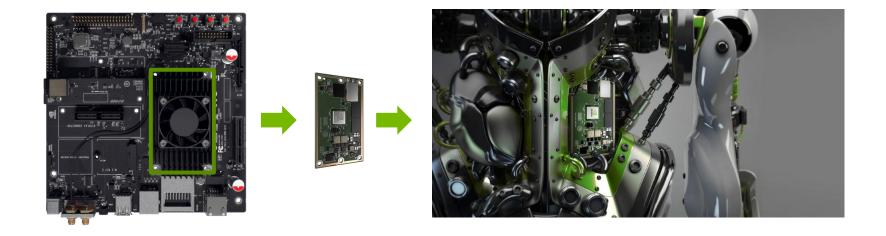
A SUPERCOMPUTER FOR AUTONOMOUS MACHINES

Bringing AI and machine learning to a world of robots and drones

Jetson TX1 is the first embedded computer designed to process deep neural networks


1 TeraFLOPS in a credit-card sized module

Jetson TX1



	JETSON TX1
GPU	1 TFLOP/s 256-core Maxwell
CPU	64-bit ARM A57 CPUs
Memory	4 GB LPDDR4 25.6 GB/s
Video decode	4K 60Hz
Video encode	4K 30Hz
CSI	Up to 6 cameras 1400 Mpix/s
Display	2x DSI, 1x eDP 1.4, 1x DP 1.2/HDMI
Wifi	802.11 2x2 ac
Networking	1 Gigabit Ethernet
PCIE	Gen 2 1x1 + 1x4
Storage	16 GB eMMC, SDIO, SATA
Other	3x UART, 3x SPI, 4x I2C, 4x I2S, GPIOs

Jetson TX1 Developer Kit

Jetson TX1 Developer Board 5MP Camera Jetson SDK

Develop and deploy Jetson TX1 and Jetson TX1 Developer Kit

EUROPE'S BRIGHTEST MINDS & BEST IDEAS

GET A 20% DISCOUNT WITH CODE ALLOGTCEU2016

Sep 28-29, 2016 | Amsterdam www.gputechconf.eu #GTC16EU

DEEP LEARNING & ARTIFICIAL INTELLIGENCE

AUTONOMOUS VEHICLES

VIRTUAL REALITY & AUGMENTED REALITY

SUPERCOMPUTING & HPC

GTC Europe is a two-day conference designed to expose the innovative ways developers, businesses and academics are using parallel computing to transform our world.

2 Days | 1,000 Attendees | 50+ Exhibitors | 50+ Speakers | 10+ Tracks | 15+ Hands-on Labs | 1-to-1 Meetings

Deep Learning in the Cloud

NVIDIA in AWS currently 2.2GFlops - g2.2xlarge - soon to be upgraded

Deep Learning Lab http://nvlabs.qwiklab.com

